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We calculate interspecies Rydberg-Rydberg interaction strengths for the heavy alkali metals Rb and Cs.
The presence of strong Forster resonances makes interspecies coupling a promising approach for long-range
entanglement generation. We also provide an overview of the strongest Forster resonances for Rb-Rb and Cs-Cs
using different principal quantum numbers for the two atoms. We show how interspecies coupling can be used
for high fidelity quantum nondemolition state measurements with low cross-talk in qubit arrays.
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I. INTRODUCTION

Optically trapped neutral atoms are being actively devel-
oped for quantum simulation and quantum computing appli-
cations [1,2] and there has been substantial recent progress in
improving the fidelity of one- and two-qubit gate operations
[3—7]. Several different approaches are possible for encoding
qubits in neutral atoms. For example, collective encoding
provides a method for establishing a multiqubit register in
the collective states of a single atomic ensemble [8]. One of
the challenges in implementation of collective encoding is
measuring the state of a single qubit without disturbing the rest
of the register. This can in principle be done by state selective
excitation to a Rydberg level followed by ionization. This
has the drawback of suffering from less than unity quantum
efficiency of practical ion detectors, plus the problem of atom
loss. After each measurement of a bit value of |1) an atom is
lost and has to be replaced from the collective reservoir state.
The number of measurements which can be made before the
reservoir is depleted is thus limited by the number of atoms
in the ensemble. An alternative is to perform a Rydberg gate
between the register to be measured and an auxiliary register
(or single qubit) in a neighboring trap. The state of the auxiliary
bit can then be measured without atom loss. This has the
drawback of requiring a longer range gate to be performed.
For qubits encoded in a single atom, optical trap arrays can be
used to define a multiqubit register [3,4,9,10]. Also in this case
measurement of the state of a single qubit without disturbance
of proximal qubit locations is challenging due to the isotropic
distribution of light scattered during a measurement.

State measurements may also be based on cross entan-
glement of two different atomic elements located in the same
trap, or nearby traps. By creating entanglement between qubits
encoded in different types of atoms the quantum state of a qubit
encoded in atom a can be measured via light scattering from
the qubit encoded in atom b. This is analogous to the mixed
species quantum logic spectroscopy previously demonstrated
with trapped ions [11]. For example Rb atoms have D and D,
resonance lines at 795 and 780 nm while Cs atoms have D
and D; lines at 894 and 852 nm. The large separation implies
that measurements, as well as optical pumping and state
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preparation, can be performed independently on nearby atoms.
Atoms of different species a and b can have a strong dipole-
dipole interaction due to a Forster type mechanism when the
energy defect 8 = h(8qa + 8pp) = (Uy — Uy) + (Ug — Up)
is small as shown in Fig. 1. Here a,b denote initial quantum
states and o, 8 denote the dipole coupled states. In this paper we
provide a detailed analysis of interspecies Forster resonances
for Rb and Cs atoms and analyze the application of the
interspecies coupling to quantum nondemolition (QND) state
measurements.

The structure of the paper is as follows. In Sec. I we provide
general formulas for calculating interspecies dipole-dipole
interactions. The formalism generalizes the results of [12] to
the situation where the laser excited atoms are not in the same
quantum state. In Sec. III we present a list of useful Forster
resonances for Rb-Cs coupling. In Sec. IV we list the strongest
resonances for coupling Rb-Rb and Cs-Cs using different
principal quantum numbers n for each atom. In Sec. V the
angular variation of the interaction is calculated for isotropic
and strongly anisotropic cases, and in Sec. VI we discuss the
problem of qubit measurement and show how the interspecies
coupling can be used for fast measurements with very low
cross-talk. Section VII summarizes our results.

II. DIPOLE-DIPOLE RYDBERG INTERACTION
BETWEEN DISTINGUISHABLE ATOMS

In this section we provide explicit expressions for cal-
culating the interspecies dipole-dipole interaction between
atoms a and b leading to a Rydberg blockade. Our notation
mostly follows the theory of [12] with some modifications,
and slightly generalized to allow for the initial Rydberg pair
states to be distinguishable. We characterize the strength of the
interaction for a particular angular momentum channel by the
C3 and van der Waals coefficients. The label y, = (24,714,045 ja)
denotes the quantum numbers of a single Rydberg level a.
The coupling (ab) <> (af) specifies an interaction channel
k coupling a pair of atoms in fine-structure levels a,b to a
pair of atoms in fine-structure levels «,. Here z specifies
the atomic species, n is the principal quantum number, [ is
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FIG. 1. (Color online) The resonance condition for interspecies
dipole-dipole coupling between initial states a,b and target states «, 8
is &m = 5,3,,.

the orbital angular momentum, and j is the total electronic
angular momentum of a fine-structure state. We assume single
electron s = 1/2 atoms throughout.

We define the C3; coefficient of channel k as

5 (Vellrallva) (vl Irsl1vs)
VCie + D2js + 1)’

where ¢? = e?/4mey, e is the electronic charge, ¢ is the
permittivity of free space, and (y,||r.|lv.) is a reduced
matrix element in the fine-structure basis. This differs
from the notation of [12] where the C; coefficient was
defined in terms of radial matrix elements in the »,/ ba-
sis. Note that Cs; depends on a total of 14 parameters:
Zavasna»lavjasnbvlbvjbsnavloujavnﬂvlﬁt.jﬁ'

The energy defect for channel k is hdy = M8y + 8pp) =
[U(We) = Ul +[U(yg) — U(yp)]. In the approximation
that a single channel dominates the interaction the energy
shift of a Forster eigenstate |uy,) depends on the interatomic
separation R as

Csila,b,a,f) =q

ey

12
4Dyy(mq,mp)C3
5 — o . @

Ue( ) Pty [ +
mg,mp) = — | 1—

ke b R252 R

The angular factor Dy, is always positive so for §; > 0(< 0)

the interaction is attractive (repulsive). The long-range van der

Waals interaction for eigenstate £ in channel k is

D C3p 1
hér RO’

We define a crossover distance R, marking the boundary
between a 1/R> resonant interaction and a 1/R® van der Waals

interaction by
1/6
R. — Dk/ZC32/< /
o\ n '

The angular factor Dy(m,,m;) depends on the quantum
numbers of the interacting states and is calculated with the
method described in the Appendix.

When we consider the interaction of atoms of different
types, either two different atomic elements, or two different
isotopes of one element, we have y, # ¥, and only include
the coupling (ab) <> (aB). Also for atoms of the same type
but with y, # y,, there will usually only be a single coupling
(ab) <> («f) which is dominant. The Dy, values for channel

Ukevaw = —
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TABLE I. Interaction channels k, eigenvalues Dy,, and
eigenvectors |uy,) for atoms in ns;;, states. Eigenvalues Dy, are
for atoms in identical initial states y, # y, with allowed couplings
(ab) <> (ap). Eigenvalues D, are for atoms in initial states
Y. = ¥» with allowed couplings (ab) < (¢f) and (ab) < (Bw).
The eigenvectors specified in terms of states |m,,m;) are the
singlet and triplet states |u,) = %(H/Z,—l/z) —1—=1/2,1/2)),
luro) = %(|1/27—1/2> +1-1/2,1/2)), ) = |£1/2,£1/2).
States s,10,¢=+ are labeled as £ = 1,2,3,4, respectively.

Channel & ja jﬂ m=mg, + my |1/tkg> Dk( Dil
1 12 12 0 lus) 0 0
0 luo)  16/9  32/9
+1 lus)  4/9  8/9
2 12 3)2 0 lus) 2 4
0 o) 2/9  4/9
+1 lus) 1479 28/9
3 32 1)2 0 lus) 2 4
0 luo)  2/9  4/9
+1 lus) 1479 28/9
4 32 32 0 luts) 2 4
0 luo)  34/9  68/9
+1 lus)  22/9 4479

k and eigenvector £ for ns;;, states are given in Table I.
Interaction of atoms of the same type which are prepared
in the same levels, y, = y5, will have two sets of couplings
of the same strength: (ab) <> (¢B) and (ab) < (Bw). This
gives the twice larger D;, values given in Table I, which are
in agreement with the values given in Table I of [12].!
Starting with a specific molecular Rydberg state |{) =
Z” cijlmqi,mp;) the interaction energy due to channel k
is found by decomposing into the Forster eigenstates |uyg).
Writing |¢) = Z[ Creltre) with cxe = (uge|) we have

Uyyh = Z |ckel* Uke.
¢

When there are multiple interaction channels {k}, corre-
sponding to additional values of y,,y, the situation is more
complicated and in general has to be treated by numerical
solution of the eigensystem of the matrix in Eq. (A1), extended
to include multiple channels. When R > R, so the interaction
energy is small compared to the Forster energy defect there
is negligible amplitude of the target states o, and in a first
approximation we may assume the energy shifts are additive.
In this van der Waals limit the interaction energy is

Upyy,vaw = Z ke Uge vaw- 3)
ke

At small R where the interaction is resonant and there is
substantial state mixing we must account for coupling between
channels, which is most conveniently done numerically. The
interchannel coupling may lead to nonadditive behavior, as has
been discussed previously [13,14]

To compare the values in Table I of [12] with those given here it is
necessary to account for the different definitions of Cj.
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FIG. 2. (Color online) Energy defects for interspecies cou-
pling with nscs > nsgys nPRo = NSRy, NPcs = NScs — 1. The dif-
ferent curves show the (j,rv.jpcs) channels in the sequence
(3/2,3/2),(1/2,3/2),(3/2,1/2),(1/2,1/2) from top to bottom.

III. RB-CS FORSTER RESONANCES

Forster resonances for Rb-Cs coupling occur for a range of
angular momentum channels. The simplest case is excitation of
nsi,2 levels which are dipole coupled to np1,2,np3,». Figures 2
and 3 show the energy defects for all four fine-structure
channels. There are a large number of resonances with the
Rb principal quantum number either larger than or smaller
than that of Cs. Table II lists the strongest resonances for
40 < ngrp < 90. Radial matrix elements were calculated using
the WKB approximation of [15] with quantum defect values
taken from [16,17] for 8’Rb and [18,19] for Cs.

The strongest resonance in the table (last row) provides an
interaction strength of 2 MHz at R = 20 um. Even stronger
resonances are available at higher n. For example, the reso-
nance at ngp = 121,ncs = 124 gives MHz scale interaction
strengths at R = 45 um. Note that the energy defect at a
resonance can be either positive or negative so the interaction
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FIG. 3. (Color online) Energy defects for interspecies cou-
pling with nscs < nsgp, npro = nSrp — 1, npcs = nscs. The dif-
ferent curves show the (j,rp,Jjp.cs) channels in the sequence
(3/2,3/2),(1/2,3/2),(3/2,1/2),(1/2,1/2) from top to bottom.

can be either attractive or repulsive. This behavior is distinct
from the intraspecies coupling for Rb-Rb or Cs-Cs excited to
the same ns states for which the interaction is always repulsive
(see Fig. 4).

IV. FORSTER RESONANCES OF RB OR CS ATOMS

Analogous to the Rb-Cs Forster resonances studied in
Sec. III there are resonances for Rb-Rb or Cs-Cs interactions.
Figure 4 shows the energy defect for excitation of two Rb
atoms or two Cs atoms to the same nsy, state. Even at large n

TABLE II. Forster resonances for Rb-Cs ns; ), states. Only resonances with defects less than 0.0005 times the level spacing and |C3 | >
1.0 GHz um? for 40 < ng, < 90 are listed. The van der Waals interaction strength and R, distance are listed for the strongest eigenvector for

each channel, which are |u,q) for channels 1,4 and |u,) for channels 2,3.

Channel ~ Rbly,)  Rbly,)  Csly)  Cslys)  8/2r (MHz)  Cyx (GHzum®)  Upaw (GHzpm®) R, (um)
4 45S]/2 45[73/2 47S1/2 46p3/2 28.0 —1.29 —223 4.47
4 46S1/2 46[73/2 48S1/2 47}73/2 —11.5 —1.41 656 6.21
3 4851/2 48p3/2 51S1/2 50])1/2 —5.71 1.69 994 7.47
1 595‘]/2 58[7]/2 57S1/2 57p1/2 —16.6 —3.54 1350 6.58
1 61S1/2 61[71/2 65S1/2 64}71/2 2.65 —4.80 —15500 13.4
2 6851/2 67p1/2 67S1/2 67]73/2 5.25 6.5 —16100 12.1
2 695‘]/2 68p|/2 68S1/2 68p3/2 —7.40 6.92 12900 11.0
3 71S1/2 70[73/2 69S1/2 69}71/2 9.35 8.01 —13700 10.7
3 7251/2 71p3/2 70S1/2 70]71/2 —7.99 8.51 18100 11.5
2 7251/2 72p|/2 75S1/2 74p3/2 4.61 9.65 —40400 144
2 73S1/2 73]71/2 7651/2 75p3/2 —4.31 10.2 48400 15.0
3 77512 71ps) 81s1)2 80p1)2 —2.19 12.3 138000 20.0
1 8151/2 80p|/2 78S1/2 78p1/2 6.31 —13.4 —50800 14.2
1 82S1/2 8]]71/2 7951/2 79]71/2 —6.41 —14.2 55600 14.3
1 8451/2 84[71/2 89S1/2 88]71/2 —2.43 —18.2 243000 21.5
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FIG. 4. (Color online) Energy defects for intraspecies coupling
for the channel nsns — nj,(n — l)jl’, for Rb-Rb (left) and Cs-Cs
(right). The middle two series in each plot, which are almost identical,
are for j,,j, = 1/2,3/2 and 3/2,1/2.

the energy defect is substantial for the dominant channel which
limits the interaction strength [12]. The energy defect can be
reduced using an external field to give a so-called Stark tuned
Forster resonance, as has been demonstrated experimentally
with dc [20] and ac [21] fields. Alternatively, the interaction
strength can be increased substantially, without an electric
field, by exciting each atom to a different n for which there
is a Forster resonance as shown in Figs. 5 and 6. This type of
resonance has been used to advantage in recent atom-photon
coupling experiments with Rb atoms [22]. Tables III and IV
list the strongest intraspecies resonances. Comparison of the
tables for interspecies and intraspecies resonances shows that
they have similar strength.

V. ANGULAR DEPENDENCE

The description so far has considered only the situation
where the atoms are quantized along Z which coincides with
the molecular axis R connecting atom a to atom b. The
more general case of R at an angle 6 with respect to 2
is important for calculating interaction strengths in three-
dimensional ensembles. As we will see the near spherical
symmetry of the interaction which is known for coupling of
indistinguishable atomic ns;, states is substantially modified
when we consider distinguishable atomic states.

The angular dependence of the interaction is found by
noting that when the molecular axis is rotated relative to a
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FIG. 5. (Color online) Energy defects for Rb-Rb coupling. The
different curves show the (4, j,») channels.
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FIG. 6. (Color online) Energy defects for Cs-Cs coupling. The
different curves show the (jq, j,») channels.

fixed laboratory frame the expansion coefficients ¢y, depend
on the rotation angles, as described in [12]; see also [23]. For
the case of initial ns;, Rydberg states we have

cre(0) = (we(ma,mp)d,2,, (0)d,72, (O (mar,my))
with d,l,,/az‘ma, (6) the reduced Wigner matrix for j =1/2
evaluated at angle 6.

The angular behavior of the van der Waals interaction in
channel « is then found by generalizing Eq. (3) to

Ci 1

T3, RS “4)

Uppyvaw(®) = Y leee @) Urevaw = — fi(0)
14

where fi(6) = Y, Icke(0)* Die.

The small R resonant interaction can be treated analytically
when a single channel is dominant. The interaction strength in
channel k at angle 6 is given by Eq. (2) with Dy, replaced by

Ji(0):

(&)

172
hé 4£.(6)C?
Uk(9)=7k 1—(1+M)

h282 RS

In the van der Waals limit we add the interaction from
all channels. For s states there are two limiting cases of
parallel and antiparallel spins. For the parallel initial state
l¥) =11/2,1/2) and y, # y» we find

e (0) = 0,

c®) = x/icos(G/Z) sin(6/2),
c3(0) = cos*(6/2),

cra(9) = sin*(6/2),
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TABLE III. Dominant Forster resonances for Rb-Rb ns,, states. The van der Waals interaction strength and R, distance are given for the

strongest eigenvector for the listed channel.

Channel Rbly.) Rb|yu) Rbly,) Rblys) 8/2m (MHz) Csx (GHz um?) Ur vaw (GHz pum®) R (um)
4 38.8‘1/2 38p3/2 39S1/2 38]73/2 4.62 —0.621 —-315 6.39
1 495y, 49p1 ) 51512 50p1)2 30.3 —-1.91 —214 4.38
1 50s1,2 50p1,2 52512 Sipip —-31.5 —2.08 244 4.45
2 65S1/2 65p1/2 67S1/2 66]73/2 32.0 6.30 —2480 6.53
2 67s1)2 67p1)2 6951/, 6832 2.84 7.14 —36000 15.3
3 6851/ 68p3)2 70512 69p1)2 4.60 7.34 ~23500 13.1
3 69S1/2 69p3/2 71S1/2 70]71/2 —6.92 7.80 17600 11.7
1 80s1/2 80p1)2 83512 82p1)2 5.20 —149 —76400 15.7
1 81s1)2 81p1) 8451/ 83p1) —2.92 —15.7 151000 19.3
1 82S1/2 82p1/2 85S1/2 84]71/2 —10.3 —16.5 47400 12.9
which results in isotropic in the limit of vanishing fine-structure splitting
. between npy,, — np3».
fi = M We proceéd to illu/strate these results with some examples.
9 Consider two Cs atoms in the Rydberg state 81si/|m, =
14 — 6sin%(0) 1/2),81s1/2|m; = 1/2) as a function of 6. The interaction
h=fh= o9 (©) is dominated by the coupling |81s;,2)[81s1,2) <> [81p)|80p)
22 4+ 65in(0 with all four fine-structure channels contributing. Us-
f, = 2208 O) ing  C2,/8 = (—140.4,—237.7,—196.8,—463.0) GHz p1m®
9 for k = 1,4 we find
For the antiparallel state /) = [1/2,—1/2) we find [CsCs _ 3740 + 225 sin%() GH)
vdW 6
cri(0) = 1/\/5’ cr(f) = COS(H)/‘/Z with R in um. For a pair of Rb at§ms inthe same 815/, state we
c3(0) = —sin(0)/2, ca(0) = sin(0)/2, ﬁn((li Cgk/(sk = (—266.8,—362.1,—334.4,—499.1) GHz um°®
an
which results in — 4840 + 92.5 Sinz(e)(GHZ)_
fi= 8 — 65in%(0) vaw RS
! 9 ’ The Cs-Cs and Rb-Rb interaction shifts are shown in Fig. 7
10 + 6 sin%(0) as a function of the molecular axis angle 8. We see that both
= f3= 9 (N species have comparable interaction strengths that are weakly
- anisotropic with an angular variation of about 2% for Rb and
f, = 0= 0s70) 6% for Cs.
9 The situation can be markedly different for Rb-Cs. Taking

For other initial Zeeman states the angular functions f
will be different than those given here. Identical initial states
with y, = y» have f; twice as large as those in Egs. (6)
and (7). Although all channels have substantial anisotropy,
the total interaction summed over channels, Zk fr(0), has
no 6 dependence which implies that the interaction becomes

ncs = 81 there is a Forster resonance with Rb at ngp, = 77.
The interaction is strongly dominated by a single channel k =
3. Using C32’k/5k = (—729.0,638.4,—69 020,345.2) GHz um®
for k = 1,4 we find

Rb—Cs

105900 — 45 330 sin%(9)
vdW - (GH

RO

7).

TABLE IV. Dominant Forster resonances for Cs-Cs nsy, states. The van der Waals interaction strength and R. distance are given for the

strongest eigenvector for the listed channel.

Channel Cs|ya) Cs|yy) Cslyp) Cs|yp) 8/2m (MHz) C3x (GHz um?) U vaw (GHz pum®) R, (um)
4 4251/2 42])3/2 4351/2 42[)3/2 10.2 —0.867 —-279 5.49
4 43S1/2 43173/2 445’1/2 43[73/2 —42.4 —0.961 82.2 3.53
2 45S1/2 45])1/2 47S1/2 46]73/2 37.7 1.28 —86.3 3.63
3 4751/2 47]93/2 4951/2 48[)1/2 21.7 1.41 —184 4.51
1 64S1/2 64171/2 68S1/2 67p1/2 1.67 —5.8 —35700 16.7

2 73S1/2 73[)1/2 76S1/2 75]73/2 —1.88 10.2 110000 19.7

3 7651/2 76]93/2 7951/2 78[)1/2 7.59 11.0 —32100 12.7

3 77S|/2 771)3/2 805'1/2 79p|/2 —3.91 11.7 69600 16.2

1 81S1/2 81[)1/2 865‘1/2 85]71/2 3.86 —15.7 —114000 17.6
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FIG. 7. (Color online) Angular variation of the van der Waals
interaction for Rb-Rb, Cs-Cs, and Rb-Cs coupling at R = 12.7 um.
In each case the initial states have m, = m;, = 1/2.

The interspecies interaction is stronger by about a factor
of 20 than for Rb-Rb or Cs-Cs, and is strongly anisotropic
with a minimum at 6§ = /2. This is because of the domi-
nance of the k = 3 channel. A different situation arises for
the Rb 84s,,-Cs 8951/, resonance. In this case C32’k /0 =
(—136600,1028,2025,683.9) GHz um® for k = 1,4. The k =
1 channel is now dominant and

54300 4 92 600 sin(0
+ SI°0) GHy).

Rb—Cs

UVdW ) = R6

As seen in Fig. 7 the interaction now has a maximum at

0 = /2 and is strongly anisotropic. The Rb-Rb or Cs-Cs

Forster resonances given in Tables III and IV can also be
anisotropic depending on which channels dominate.

VI. QUANTUM NONDEMOLITION STATE
MEASUREMENTS WITH LOW CROSS-TALK USING
INTERSPECIES COUPLING

One of the outstanding challenges of neutral atom ap-
proaches to quantum computing is the requirement of qubit
state measurements without loss, and with low cross-talk to
proximal qubits. Such a capability is essential for implemen-
tation of quantum error correction. The most widely used
approach to qubit measurements with neutral alkali-metal
atoms relies on imaging of fluorescence photons scattered
from a cycling transition between one of the qubit states
and the strong D, resonance line [2]. Due to a nonzero rate
for spontaneous Raman transitions from the upper hyperfine
manifold there is a limit to how many photons can be scattered,
and imaged, without changing the quantum state. This problem
is typically solved by preceding a measurement with resonant
“blow away” light that removes atoms in one of the hyperfine
states. The presence or absence of an atom is then measured
with repumping light turned on, and a positive measurement
result is used to infer that the atom was in the state that was
not blown away.

This method can indeed provide high fidelity state mea-
surements but has several drawbacks. An atom is lost half the
time on average, and must be reloaded and reinitialized for a
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computation to proceed. Atom reloading involves mechanical
transport, and thus tends to be slow compared to gate and
measurement operations. In addition, error correction would
require that a single site in a qubit array can be reloaded, with-
out disturbing proximal qubits. While progress has been made
towards this goal [24-26], much work remains to be done.

Lossless QND measurements that leave the atom in one of
the qubit states, or at least in a known Zeeman sublevel of
the desired hyperfine state, can be performed provided that the
measurement is completed while scattering so few photons that
the probability of a Raman transition is negligible. This was
first done for atoms strongly coupled to a cavity [27-29], and
was subsequently extended to atoms in free space [6,30,31].

Despite these advances, achieving useful QND state mea-
surements in an array of neutral atom qubits remains an out-
standing challenge due to the absorption of scattered photons
by proximal atoms. Since the resonant cross section for photon
absorptioniso = %Az and qubits in recent lattice experiments
are spaced by d ~ 51 [3,4] the probability of a scattered
photon being absorbed is 1405 ~ o/(4md?) ~ 0.0015. If the
qubit measurement is performed with a moderately high
numerical aperture collection lens of NA = 0.5 and the optical
and detector efficiencies are 50% the probability of photon
detection is nger ~ 0.034 so that n,ps/Ngec ~ 0.04. This ratio
implies that a state measurement based on detection of only
a single photon would incur a ~4% probability of unwanted
photon absorption at a neighboring qubit. This 4% error rate
is too large to be efficiently handled by protocols for quantum
error correction.

One approach to solving the cross-talk problem is to protect
nearby qubits in states that are dark to scattered resonant
photons. This has been used effectively in experiments with
trapped ions [32]. Such methods are in principle possible with
neutral atoms, and an example using a single species is shown
in Fig. 8 for ®’Rb. Similar ideas could also be implemented
with other species. While the protection protocol can in
principle solve the cross-talk problem it has the drawback
of requiring both local and global operations, and is thus both
complicated to implement and likely to be relatively slow.
Nevertheless this protocol points to an alternative approach
using interspecies coupling. The Fig. 8 protocol suppresses
cross-talk by placing all but the atom of interest in a dark state
with respect to the probe light. Another way of suppressing
cross-talk is to use one species for computational qubits and a
second species for measurement qubits. Selective mapping of
computational to measurement qubits allows us to probe the
measurement qubits while keeping the computational qubits
in a dark state with respect to the probe light, which is only
resonant with the second species.

This idea is made explicit using a two-species array
as shown in Fig. 9. Our approach is analogous to the
demonstrations of quantum logic spectroscopy [11] and
entanglement [33] with two ion species, and builds on
earlier ideas of mapping single atoms to ensembles for
fast readout [34] as well as the availability of asymmetric
Rydberg interactions for creating multiparticle entanglement
[35]. The interspecies protocol requires fewer operations than
in Fig. 8, and increases the useful photon rate per atom by
a factor of 4 or more while eliminating cross-talk to other
qubits.
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global site specific global
initial shelving measurement restore
(@)
Cyf O+
F=2 |b= . |a>
55112
F=1| ——— —*—
la= |b>
prepare resonance optical pump

fluorescence and/or Rabi rotate
to fiducial state |2,0>

FIG. 8. (Color online) Protection protocol for site specific measurements without cross-talk. Panel (a) shows qubits in a superposition of
hyperfine clock states of 8Rb. In (b) a global shelving operation is performed to map |a) onto |2,2) for all qubits. In (c) a site specific mapping
of |b) to |1,0) is performed. Resonance fluorescence is then generated using light of all polarizations coupling 5s;,,| f = 1) to 5p3s| f' = 0).
The atom can only decay back to f = 1 and scattered photons are off-resonant with the shelved atoms in |2,0). If scattered photons are detected
the state is projected into f = 1 and the measurement result was qubit state |b). The atom is then pumped into |1,0) using o and o_ polarized
light, after which it is rotated to |2,0) using a 7 polarized microwave, or Raman light. If no scattered photons are detected the measurement
result is qubit state |a) and the atom shelved in |2,2) is rotated back to |2,0) using _ — o, Raman light. Finally, in (d) the globally protected

states are restored back to |a) using Raman light.

Consider the qubit array shown in Fig. 9. We assume this
is a two-dimensional array of three-dimensional traps for Cs
atoms as described in [9], and used for recent experiments
with single qubit [3] and two-qubit [7] quantum gates. We will
modify the array slightly by changing the wavelength of the
trap light from 780 to 820 nm. This is still blue detuned for
Cs atoms which will be trapped at local minima of the optical

computational qubit measurement qubit

® . ®
A=820 nm trap array

FIG. 9. (Color online) Trap array with 820-nm light creates a
checkerboard pattern of Cs computational qubits in blue detuned
traps and Rb measurement qubits in red detuned traps.

intensity. The 820-nm light is red detuned for Rb atoms which
will be trapped at local maxima of the intensity, forming a
checkerboard pattern of alternating Cs and Rb atoms. The
lattice period separating atoms of the same species will be
d = 4 pm, and each Cs atom is surrounded by four Rb atoms
at a distance of d = 4/+/2 = 2.8 um. The large wavelength
separation between the Rb resonance lines at 780 and 794 nm,
the trap light at 820 nm, and the Cs resonance lines at 852 and
894 nm allows for independent loading, cooling, control, and
measurement of the two species.

Let us now choose an interspecies Forster resonance that
gives strong Rb-Cs coupling and relatively weak Rb-Rb
coupling. An example is shown in Fig. 10 for the Rb48s-Cs51s

100
50
— Rb48s-Cs51s
:El Forster
= 10
2 5
Rb48s-Rb48s
UvdW
12 4 6 8 10
R (um)

FIG. 10. (Color online) Log-log plot of the interspecies coupling
strength (upper curve) and Rb-Rb coupling strength (lower curve) for
Rb48s and Cs51s states at & = 90deg. The Rb-Cs curve is the full
Forster interaction of Eq. (2) for the single dominant channel 3 from
Table II. The Rb-Rb curve is the van der Waals interaction summed
over all four channels for 48548s <> 47p48p.

042710-7



I. I. BETEROV AND M. SAFFMAN

channel 3 resonance from Table II. Each Cs atom interacts with
its nearest-neighbor Rb atoms with a strength of Urpcs/27m =
96.8 MHz at R = 2.8 um and 6 = 7/2. We have assumed that
the Cs and Rb atoms are excited to opposite m values so
we use Eqgs. (5) and (7) to calculate the interaction strength.
In contrast two Rb atoms interact with a much smaller
Urbrp/2m =2.3MHz at R =4 um. To measure the state
of a Cs atom qubit we prepare all Rb atoms in the state |1)gp =
|2,2) by optical pumping and then perform the sequence

Cs : col0) +c1|1) 7T col0) +icy|S1s),
Rb: (1) 7 i[48s) 7 —|0),
Cs : ¢ol0) +ic1|51s) —7 ¢ol0) + ] 1).

Provided the Rabi frequency of the Rb Rydberg excitation
Qpgyp is small compared to Ugrpcs We create the entangled state

c0l0)csl0)rb + ¢111)cs| T Ro-

The overbar in the Rb kets denotes that this is a multiparticle
state of four Rb atoms. We then measure the hyperfine state of
the Rb atoms. A detector click projects the Cs qubit into |1)
and no click projects into |0).

This approach has several advantageous features. Since
each Cs atom is strongly coupled to four nearest neighbors the
photon rate can be four times greater than for measurement
of a single atom. This reduces the difficulty of obtaining
a hyperfine state measurement without suffering a Raman
transition. Furthermore since the state of the Cs qubit is
measured using fluorescence light at 780 nm which is far
detuned from the Cs resonance lines, cross-talk to other Cs
qubits will be negligible. After a measurement the Rb atoms
can be rapidly repumped to the |1)g;, state in preparation for
the next measurement. In addition to measurement of a single
qubit the Rb atoms could also naturally be used as ancilla
qubits for syndrome extraction in quantum error correcting
codes.

We proceed to estimate the measurement fidelity with
realistic experimental parameters. When the Cs atom is in state
|0) the transfer of the Rb atom between states will be affected
by residual couplings Ugprp to nearby atoms. This gives a
transfer error for four atoms of [35] E = 0.72U%.zy/|2rb |-
The other dominant error is the imperfect blockade when the
Cs qubitis in state |1). The first 7 pulse on the Rb atom creates
the state crp|48s) with

|2 |QRb|2

_ ) 2 )
= ——— 2 sin® (/1 + Ulye/ |0l —>.
|2R0]? + U ( Roes 2

If we set the Rb Rabi frequency such that Urpcs/|S2rp| =
/3 then crp = 0, and there is no state transfer, as desired.
This result will be modified slightly by the presence of more
than one Rb atom, but an equivalent nulling condition will
still exist. For the interaction strengths given above, this
condition is Qgrp /27w = 55.9 MHz and the transfer erroris E =
0.72 x (2.3/55.9)> = 0.0012. There is also a spontaneous
emission error from the finite lifetime Rydberg states. The Cs
qubit is on average Rydberg excited for ¢t = (1/2)(27/ Qrp +
w/Qcs). The Rb atom is on average Rydberg excited for
t = (1/2)w/Qrp- The room-temperature lifetimes are [36]

|crb
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Troags = I8 us and 7¢gs51; = 63 us. Taking Qs = Qrp We find
Pery = 7.7 x 1075 and Py cs = 2.1 x 1074,

The largest error is the Rb state transfer at 0.0012. This
small error occurs on average half the time when the Cs
atom is in the |0) state and could be reduced even further by
using a 25% larger lattice spacing which would increase the
Urbcs/ Urbrp ratio by a factor of 2. It is also likely that adiabatic
or composite pulse sequences can be designed to minimize the
sensitivity to small variations in coupling strength [37].

Finally we note that the use of two different species,
combined with optical tweezers at a wavelength that only
perturbs one species at a time, provides a means to move
quantum information about in a larger array. This idea was
developed for the case of Cs and Li atoms in [38]. In
the cited work the entanglement of Cs and Li atoms was
envisioned to occur via short-range molecular interactions.
The interspecies Rydberg interaction described here can in
principle be extended to Cs-Li, or other combinations, with the
advantage that interactions can be performed at long range.

VII. SUMMARY

We have calculated the interspecies Forster interaction
between Rb and Cs atoms, as well as Forster interactions
for Rb-Rb and Cs-Cs where the participating atoms are
excited to ns states with different principal quantum numbers.
These interactions can be remarkably strong, leading to
van der Waals interaction strengths of several MHz at R =
20 um for n < 90. The strong interactions are of interest
for long-range coupling between atoms of the same species,
which has already been demonstrated in Rb ensembles
[22].

We also propose to use the Rb-Cs interaction for lossless
and cross-talk free QND measurements. Needless to say the
fidelity of this approach to measurements relies on having high
fidelity Rydberg gates available. The current state of the art
using the Rydberg blockade interaction, without postselection,
uses a CNOT gate to create Bell states with a fidelity of 0.73
[7]. This is much lower than the intrinsic fidelity of the Rb-
Cs mapping protocol, which we estimate in Sec. VI to be
~0.001 with realistic experimental parameters. The two-qubit
gate fidelity is therefore the largest roadblock for the protocol
analyzed here. On the other hand, there is little interest in QND
measurements of single atoms in a qubit array if high fidelity
gates are not also available. When a high fidelity Rydberg gate
is demonstrated, the cross entanglement protocol described
here may prove valuable for scaling up quantum information
tasks with low cross-talk.
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APPENDIX: CHANNEL EIGENVALUES

To find the angular factors Dy (m,,m;) for channel k and initial Zeeman states m,,m; we form the matrix of coefficients

—Ja—Jp JasJp
0 T 0 My i My, my,
—Jur—Jp JasJB
M = O . . 0 . Mln“Nab’mbNab MmaNab’mbNub (A1)
“JarTJB —Jas—JB .
Mmal,mhl MmaNabvmbNab hak e 0
JasJp JusJp
Mma]vmbl MmaNabambN[,h 0 e hidy

The matrix has dimensions N x N with N = Ny, + Ny and accounts for the coupling between states with the same value
of m = m, + my. The laser excited states are referred to as “initial” states and the dipole coupled Rydberg states are referred
to as “target” states. The number of initial states is Na, = 1+ (jz + j») — [m|. The number of target states Nyg is at most
(2ju + 1)(2jg + 1), but may be less than that due to the requirement that m, 4+ mg = m, + my,.

The nonzero off-diagonal entries are the dipole-dipole matrix elements

Cjnma Cjﬂmﬂ (Az)

Momy = lqgl—q ™ jumy1q ™ jympl—q

1
my,mpg _\/ng3,k Z C20
g=—1

with C3  defined in Eq. (1). The N,z diagonals have value /d;. The eigenvalues and eigenvectors of M give the molecular energies
of Rydberg excited atom pairs via a single interaction channel as a function of the atomic separation R with the quantization axis
along R, which points from atom a to atom b.

When the j are half integers, which is the case for alkali-metal atoms, and N,;, = 1 the eigenvalues of M are of the following
form. There are N — 2 degenerate eigenvalues U = hd; which have no R dependence and correspond to admixtures of o and

states. The remaining two eigenvalues are

, . - 12
Uss — h(Sk 1+ (144 ',],‘;a:_ju ’{:ﬁ:_jﬁ (Mm:,’mf)Z (A3)
=T (h8)? '

At large R the Uy_ eigenvalue asymptotes to zero and therefore corresponds to Uy of Eq. (2), whereby we see that

Ja s
Di(ma,mp) =6 Y )

Mo==Jou Mp==jp

2
20 JosMa Jg.mp
(Z Clql—q Cjamalchhmb1q> : (A4)
q

When y, = y, the eigenvalue is 2D;. When N, > 1 the eigenvectors are superpositions of |m,,m,) states and it is not possible to
give compact expressions for Uy, Dy. In these cases we extract the Dy from the calculated eigenvalues by comparison with Eq. (2).
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